Temario de calculo
unidad I  
  inicio
  UNIDAD I
  UNIDAD II
  UNIDAD III
  UNIDAD IV
  UNIDAD V
  => Anti derivada
  => Definición De La Integral Definida
  => Propiedades De La Integral Definida
  => Teorema De Valor Medio Para La Integral
  => Teorema Fundamental De Cálculo
  UNIDAD VI
Definición De La Integral Definida

Definicion de la integral definida

La integral definida

Desde su origen, la noción de integral ha respondido a la necesidad de mejorar los métodos de medición de áreas subtendidas bajo líneas y superficies curvas. La técnica de integración se desarrolló sobre todo a partir del siglo XVII, paralelamente a los avances que tuvieron lugar en las teorías sobre derivadas y en el cálculo diferencial.

Concepto de integral definida

La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b.

La integral definida de la función entre los extremos del intervalo [a, b] se denota como:

Propiedades de la integral definida

La integral definida cumple las siguientes propiedades:

  • Toda integral extendida a un intervalo de un solo punto, [a, a], es igual a cero.

  • Cuando la función f (x) es mayor que cero, su integral es positiva; si la función es menor que cero, su integral es negativa.

  • La integral de una suma de funciones es igual a la suma de sus integrales tomadas por separado.

  • La integral del producto de una constante por una función es igual a la constante por la integral de la función (es decir, se puede «sacar» la constante de la integral).

  • Al permutar los límites de una integral, ésta cambia de signo.

  • Dados tres puntos tales que a < b < c, entonces se cumple que (integración a trozos):

  • Para todo punto x del intervalo [a,b] al que se aplican dos funciones f (x) y g (x) tales que f (x) £ g (x), se verifica que:



 
  Temario de calculo  
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis