Temario de calculo
unidad I  
  inicio
  UNIDAD I
  UNIDAD II
  UNIDAD III
  UNIDAD IV
  => La Derivada Como Función De Cambio
  => Ecuación De La Recta Tangente Y La Norma
  => Puntos Máximos Y Mínimos De Una Función
  => Criterios De La Primera Y Segunda Derivada
  => Cálculo De Los Puntos De Inflexión De Una Función
  UNIDAD V
  UNIDAD VI
Cálculo De Los Puntos De Inflexión De Una Función
      
Cálculo de los puntos de inflexión
Para hallar los puntos de inflexión, seguiremos los siguientes pasos:
1. Hallamos la derivada segunda y calculamos sus raíces.
2. Realizamos la derivada tercera, y calculamos el signo que toman en ella los ceros de derivada segunda y si:
f'''(x) ≠ 0 Tenemos un punto de inflexión.
3. Calculamos la imagen (en la función) del punto de inflexión.
Ejemplo
Hallar los puntos de inflexión de:
f(x) = x3 − 3x + 2
f''(x) = 6x 6x = 0 x = 0.
f'''(x) = 6 Será un punto de inflexión.
f(0) = (0)3 − 3(0) + 2 = 2
Punto de inflexión: (0, 2)


Si ya hemos estudiado la concavidad y convexidad de una función habrá:
Puntos de inflexión en los puntos en que ésta pasa de cóncava a convexa o vicecersa.
Ejemplo
Calcular los puntos de inflexión de la función:
Tenemos un punto de inflexión en x = 0, ya que la función pasa de convexa a concava.
Punto de inflexión (0, 0)
      
Cálculo de los puntos de inflexión
Para hallar los puntos de inflexión, seguiremos los siguientes pasos:
1. Hallamos la derivada segunda y calculamos sus raíces.
2. Realizamos la derivada tercera, y calculamos el signo que toman en ella los ceros de derivada segunda y si:
f'''(x) ≠ 0 Tenemos un punto de inflexión.
3. Calculamos la imagen (en la función) del punto de inflexión.
Ejemplo
Hallar los puntos de inflexión de:
f(x) = x3 − 3x + 2
f''(x) = 6x 6x = 0 x = 0.
f'''(x) = 6 Será un punto de inflexión.
f(0) = (0)3 − 3(0) + 2 = 2
Punto de inflexión: (0, 2)


Si ya hemos estudiado la concavidad y convexidad de una función habrá:
Puntos de inflexión en los puntos en que ésta pasa de cóncava a convexa o vicecersa.
Ejemplo
Calcular los puntos de inflexión de la función:
Tenemos un punto de inflexión en x = 0, ya que la función pasa de convexa a concava.
Punto de inflexión (0, 0)
      
PUNTOS DE INFLEXIÓN

DEFINICIÓN
El punto que, en una función continua, separa la parte convexa de la cóncava, se llama punto de inflexión de la función. En ellos la función no es cóncava ni convexa sino que hay cambio de concavidad a convexidad o al revés.

Los puntos de inflexión están caracterizados por:

TEOREMA
      
Cálculo de los puntos de inflexión
Para hallar los puntos de inflexión, seguiremos los siguientes pasos:
1. Hallamos la derivada segunda y calculamos sus raíces.
2. Realizamos la derivada tercera, y calculamos el signo que toman en ella los ceros de derivada segunda y si:
f'''(x) ≠ 0 Tenemos un punto de inflexión.
3. Calculamos la imagen (en la función) del punto de inflexión.
Ejemplo
Hallar los puntos de inflexión de:
f(x) = x3 − 3x + 2
f''(x) = 6x 6x = 0 x = 0.
f'''(x) = 6 Será un punto de inflexión.
f(0) = (0)3 − 3(0) + 2 = 2
Punto de inflexión: (0, 2)


Si ya hemos estudiado la concavidad y convexidad de una función habrá:
Puntos de inflexión en los puntos en que ésta pasa de cóncava a convexa o vicecersa.
Ejemplo
Calcular los puntos de inflexión de la función:
Tenemos un punto de inflexión en x = 0, ya que la función pasa de convexa a concava.
Punto de inflexión (0, 0)
 

 
  Temario de calculo  
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis