Recta tangente en un punto
Significado geométrico de la recta tangente en un punto

Ejemplos

Ejercicios resueltos

Pendiente de la recta normal

La pendiente de la recta normal a una curva en un punto es la opuesta de la inversa de la pendiente de la recta tangente, por ser rectas perpendiculares entre sí.

Es decir, es la opuesta de la inversa de la derivada de la función en dicho punto.

Recta normal a una curva en un punto
La recta normal a a una curva en un punto a es aquella que pasa por el punto (a, f(a)) y cuya pendiente es igual a la inversa de la opuesta de f '(a).

Hallar la ecuación de la recta tangente y normal a la parábola y = x2 + x + 1 paralela a la bisectriz del primer cuadrante.
Sea el punto de tangencia (a, b)
m = 1
f'(a) = 2a + 12a + 1 = 1 a = 0
Punto de tangencia:(0, 1)
Recta tangente:
y − 1 = x y = x +1
Recta normal:
m= 1P(0, 1)
y − 1 = −x y = −x + 1
